Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau

0
43


  • 1.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5, 424–430 (2015).

  • 2.

    Wu, Q., Hou, Y., Yun, H. & Liu, Y. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China. Global and Planetary Change 124, 149-155 (2015).

  • 3.

    Wu, Q. & Zhang, T. Changes in active layer thickness over the Qinghai‐Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres (1984–2012) 115, D09107 (2010).

  • 4.

    Zhao, L., Cheng, G., Li, S., Zhao, X. & Wang, S. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin 45, 2181–2187 (2000).

  • 5.

    Qin, Y. et al. Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai–Tibet Plateau. Environmental Earth Sciences 75, 826 (2016).

  • 6.

    Mu, C., Zhang, T., Zhang, X., Cao, B. & Peng, X. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. European Journal of Soil Science 67, 773–781, https://doi.org/10.1111/ejss.12386 (2016).

  • 7.

    Schuur, E. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  • 8.

    Mu, C. et al. Carbon and nitrogen properties of permafrost over the Eboling Mountain in the upper reach of Heihe River basin, northwestern China. Arctic, Antarctic, and Alpine Research 47, 203–211 (2015).

  • 9.

    Mu, C. et al. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences 121, 1781–1791, https://doi.org/10.1002/2015JG003235 (2016).

  • 10.

    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6, 196–210, https://doi.org/10.1046/j.1365-2486.2000.06021.x (2000).

  • 11.

    Dutta, K., Schuur, E., Neff, J. & Zimov, S. Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology 12, 2336–2351 (2006).

  • 12.

    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biology 20, 2674–2686, https://doi.org/10.1111/gcb.12572 (2014).

  • 13.

    Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Global Change Biology 21, 2787–2803 (2015).

  • 14.

    Waldrop, M. P. et al. Molecular investigations into a globally important carbon pool: Permafrost‐protected carbon in Alaskan soils. Global Change Biology 16, 2543–2554 (2010).

  • 15.

    Lupascu, M., Wadham, J. L., Hornibrook, E. R. C. & Pancost, R. D. Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: A comparison with non-permafrost northern wetlands. Arctic, Antarctic, and Alpine Research 44, 469–482, https://doi.org/10.1657/1938-4246-44.4.469 (2012).

  • 16.

    Mu, C. et al. Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. The Cryosphere 9, 479–486 (2015).

  • 17.

    Wu, X. et al. Mineralisation and changes in the fractions of soil organic matter in soils of the permafrost Region, Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes 25, 35–44, https://doi.org/10.1002/ppp.1796 (2014).

  • 18.

    Wu, X. et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes 23, 162–169, https://doi.org/10.1002/ppp.1740 (2012).

  • 19.

    Ping, C., Jastrow, J., Jorgenson, M., Michaelson, G. & Shur, Y. Permafrost soils and carbon cycling. Soil 1, 147–171 (2015).

  • 20.

    Bockheim, J. Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. Soil Science Society of America Journal 71, 1335–1342 (2007).

  • 21.

    Vonk, J. E. et al. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. Biogeosciences 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015 (2015).

  • 22.

    Manasypov, R. M., Pokrovsky, O. S., Kirpotin, S. N. & Shirokova, L. S. Thermokarst lake waters across the permafrost zones of western Siberia. The Cryosphere 8, 1177–1193 (2014).

  • 23.

    Abbott, B. W. et al. Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews 160, 19–42 (2016).

  • 24.

    Macko, S. A. & Estep, M. L. F. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Organic Geochemistry 6, 787–790 (1984).

  • 25.

    Boström, B., Comstedt, D. & Ekblad, A. Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89–98 (2007).

  • 26.

    Davidson, E., Belk, E. & Boone, R. D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4, 217–227 (1998).

  • 27.

    Hansen, A. A. et al. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environmental microbiology 9, 2870–2884 (2007).

  • 28.

    Wu, X. et al. Environmental controls on soil organic carbon and nitrogen stocks in the high‐altitude‐arid western Qinghai‐Tibetan Plateau permafrost region. Journal of Geophysical Research: Biogeosciences 121, 176–187, https://doi.org/10.1002/2015JG003138 (2016).

  • 29.

    Wang, J. et al. Temperature sensitivity of soil carbon mineralization and nitrous oxide emission in different ecosystems along a mountain wetland-forest ecotone in the continuous permafrost of Northeast China. CATENA 121, 110–118, https://doi.org/10.1016/j.catena.2014.05.007 (2014).

  • 30.

    Elberling, B., Christiansen, H. H. & Hansen, B. U. High nitrous oxide production from thawing permafrost. Nature Geoscience 3, 332–335 (2010).

  • 31.

    Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology 18, 515–527 (2012).

  • 32.

    Clark, K., Chantigny, M. H., Angers, D. A., Rochette, P. & Parent, L. Nitrogen transformations in cold and frozen agricultural soils following organic amendments. Soil biology & biochemistry 41, 348–356 (2009).

  • 33.

    Hulzen, J. B. V., Segers, R., Bodegom, P. M. V. & Leffelaar, P. A. Temperature effects on soil methane production: an explanation for observed variability. Soil biology & biochemistry 31, 1919–1929 (1999).

  • 34.

    Huang, S., Sun, Y., Yu, X. & Zhang, W. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes. Biology and Fertility of Soils 52, 285–294 (2015).

  • 35.

    Das, S. & Adhya, T. K. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biology and Biochemistry 47, 36–45, https://doi.org/10.1016/j.soilbio.2011.11.020 (2012).

  • 36.

    Duc, N. T., Crill, P. & Bastviken, D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100, 185–196, https://doi.org/10.1007/s10533-010-9415-8 (2010).

  • 37.

    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90, https://doi.org/10.1007/s10533-011-9573-3 (2012).

  • 38.

    Noll, M., Klose, M. & Conrad, R. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS microbiology ecology 73, 215–225 (2010).

  • 39.

    Chantigny, M. H. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113, 357–380 (2003).

  • 40.

    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology 20, 641–652, https://doi.org/10.1111/gcb.12417 (2014).

  • 41.

    Krohn, J., Lozanovska, I., Kuzyakov, Y., Parvin, S. & Dorodnikov, M. CH4 and CO2 production below two contrasting peatland micro-relief forms: An inhibitor and δ13C study. Science of The Total Environment 586, 142–151, https://doi.org/10.1016/j.scitotenv.2017.01.192 (2017).

  • 42.

    Michaelson, G. J., Ping, C.-L. & Clark, M. Soil pedon carbon and nitrogen data for Alaska: An analysis and update. Open Journal of Soil Science 3, 132–142, https://doi.org/10.4236/ojss.2013.32015 (2013).

  • 43.

    Beeman, R. E. & Suflita, J. M. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study. Journal of Industrial Microbiology 5, 45–57, https://doi.org/10.1007/bf01569605 (1990).

  • 44.

    Nie, W., Pan, X., Cui, H. & Jiang, M. The influence of soil carbon and nitrogen on soil N2O emission. International Journal of Environment and Resource 5, 15–20, https://doi.org/10.14355/ijer.2016.05.003 (2016).

  • 45.

    Mu, C. et al. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena 141, 85–91 (2016).

  • 46.

    Wu, X. et al. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. Journal of Geophysical Research: Biogeosciences 122, 1705–1717, https://doi.org/10.1002/2016JG003641 (2017).

  • 47.

    Harms, T. K., Abbott, B. W. & Jones, J. B. Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117, 299–311 (2013).

  • 48.

    Darrouzetnardi, A. & Weintraub, M. N. Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. Soil biology & biochemistry 73, 22–32 (2014).

  • 49.

    Tanski, G. et al. Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic. Science of The Total Environment 581–582, 434–447, https://doi.org/10.1016/j.scitotenv.2016.12.152 (2017).

  • 50.

    Figueiredo, V., Enrichprast, A. & Rutting, T. Soil organic matter content controls gross nitrogen dynamics and N2O production in riparian and upland boreal soil. European Journal of Soil Science 67, 782–791 (2016).

  • 51.

    Wang, J. Y., T, Y. P. & H, W. Ecohydrological processes in forests: Case study from Qilian Mountains. (Science Press, 2008).

  • 52.

    Lü, G., Zhou, G., Zhou, L. & Jia, Q. Methods of soil dissolved organic carbon measurement and their applications. Journal of Meteorology and Environment 22, 51–55 (2006).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here