Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors

0
70


  • 1.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

  • 2.

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

  • 3.

    Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

  • 4.

    Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

  • 5.

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

  • 6.

    Gupta, S. & Loh, K. J. Noncontact electrical permittivity mapping and pH-sensitive films for osseointegrated prosthesis and infection monitoring. IEEE Trans. Med. Imag. 36, 2193–2202 (2017).

  • 7.

    Lee, S. et al. A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat. Commun. 5, 5898 (2014).

  • 8.

    Soekadar, S. R. et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016).

  • 9.

    Meijer, G., Pertijs, M. & Makinwa, K. Smart Sensor Systems: Emerging Technologies and Applications (Wiley, New York, NY, 2014).

  • 10.

    Hsu, Y.-C. et al. An 18.75 μW dynamic-distributing-bias temperature sensor with 0.87°C (3σ) untrimmed inaccuracy and 0.00946 mm2 area. 2017 IEEE Int. Solid-State Circuits Conf. https://doi.org/10.1109/ISSCC.2017.7870281 (2017).

  • 11.

    Yousefzadeh, B., Shalmany, S. H. & Makinwa, K. A. A. A BJT-based temperature-to-digital converter with ±60 mK (3σ) inaccuracy from −55 °C to +125 °C in 0.16-μm CMOS. IEEE J. Solid-State Circuits 52, 1044–1052 (2017).

  • 12.

    Deng, C. et al. A CMOS smart temperature sensor with single-point calibration method for clinical use. IEEE Trans. Circuits Syst. II 63, 136–139 (2016).

  • 13.

    Ha, D. et al. Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring. IEEE Trans. Very Large Scale Integr. Syst. 20, 1590–1601 (2012).

  • 14.

    Hattori, Y. et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthcare Mater. 3, 1597–1607 (2014).

  • 15.

    Jin, H., Abu-Raya, Y. S. & Haick, H. Advanced materials for health monitoring with skin-based wearable devices. Adv. Healthcare Mater. 6, 1700024 (2017).

  • 16.

    Yokota, T. et al. Ultra-flexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

  • 17.

    Kim, D.-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011).

  • 18.

    Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

  • 19.

    Yan, C., Wang, J. & Lee, P. S. Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015).

  • 20.

    Trung, T. Q., Ramasundaram, S., Hwang, B.-U. & Lee, N.-E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

  • 21.

    Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016).

  • 22.

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).

  • 23.

    Salowitz, N. P. et al. Microfabricated expandable sensor networks for intelligent sensing materials. IEEE Sens. J. 14, 2138–2144 (2014).

  • 24.

    Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

  • 25.

    Pochorovski, I. et al. H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 137, 4328–4331 (2015).

  • 26.

    Lei, T., Pochorovski, I. & Bao, Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 50, 1096–1104 (2017).

  • 27.

    Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

  • 28.

    Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

  • 29.

    Li, Y. & Shimizu, H. Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42, 2587–2593 (2009).

  • 30.

    Chortos, A. et al. Investigating limiting factors in stretchable all-carbon transistors for reliable stretchable electronics. ACS Nano 11, 7925–7937 (2017).

  • 31.

    Wang, H. & Bao, Z. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 10, 737–758 (2016).

  • 32.

    Zhou, X. J., Park, J. Y., Huang, S. M., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

  • 33.

    Gao, J. & Loo, Y.-L. Temperature-dependent electrical transport in polymer-sorted semiconducting carbon nanotube networks. Adv. Funct. Mater. 25, 105–110 (2015).

  • 34.

    Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

  • 35.

    Rother, M. et al. Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl. Mater. Interfaces 8, 5571–5579 (2016).

  • 36.

    Murmann, B. Analysis and Design of Elementary MOS Amplifier Stages (NTS Press, Austin, TX, 2013).

  • 37.

    Cai, L., Zhang, S., Miao, J., Yu, Z. & Wang, C. Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano 10, 11459–11468 (2016).

  • 38.

    Huang, C.-C., Kao, Z.-K. & Liao, Y.-C. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl. Mater. Interfaces 5, 12954–12959 (2013).

  • 39.

    Lee, S. W. et al. Positive gate bias stress instability of carbon nanotube thin film transistors. Appl. Phys. Lett. 101, 053504 (2012).

  • 40.

    Markenscoff, X. & Yannas, I. V. On the stress–strain relation for skin. J. Biomech. 12, 127–129 (1979).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here