Accelerated phosphorus recovery from aqueous solution onto decorated sewage sludge carbon

0
8


  • 1.

    Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Global Environ. Change 19, 292–305 (2009).

  • 2.

    Cooper, J., Lombardi, R., Boardman, D. & Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 57, 78–86 (2011).

  • 3.

    Koilraj, P. & Sasaki, K. Selective removal of phosphate using La-porous carbon composites from aqueous solutions: batch and column studies. Chem. Eng. J. 317, 1059–1068 (2017).

  • 4.

    Li, R. et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci. Total Environ. 559, 121–129 (2016).

  • 5.

    Li, R. et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol. 215, 209–214 (2016).

  • 6.

    Lim, B. H. & Kim, D.-J. Selective acidic elution of Ca from sewage sludge ash for phosphorus recovery under pH control. J. Ind. Eng. Chem. 46, 62–67 (2017).

  • 7.

    Liu, H., Sun, X., Yin, C. & Hu, C. Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151, 616–622 (2008).

  • 8.

    Liu, J., Zhou, Q., Chen, J., Zhang, L. & Chang, N. Phosphate adsorption on hydroxyleironelanthanum doped activated carbon fiber. Chem. Eng. J. 215-216, 859–867 (2013).

  • 9.

    Lin, J. et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide. Chem. Eng. J. 309, 118–129 (2017).

  • 10.

    Kelessidis, A. & Stasinakis, A. S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 32, 1186–1195 (2012).

  • 11.

    Pradel, M., Aissani, L., Villot, J., Baudez, J. C. & Laforest, V. From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge: a review. J. Clean. Prod. 131, 60–75 (2016).

  • 12.

    Li, N., Wei, D., Wang, S., Hu, L. & Xu, W. Comparative study of the role of extracellular polymeric substances in biosorption of Ni(II) onto aerobic/anaerobic granular sludge. J. Colloid Interf. Sci. 490, 754–761 (2017).

  • 13.

    Li, W. H., Yue, Q. Y., Gao, B. Y., Ma, Z. H. & Li, Y. J. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chem. Eng. J. 171, 320–327 (2017).

  • 14.

    Li, J.S. et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Manag. https://doi.org/10.1016/j.wasman.2018.01.007 (2018).

  • 15.

    Smith, K. M., Fowler, G. D., Pullket, S. & Graham, N. J. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res. 43, 2569–2594 (2009).

  • 16.

    Jaria, G., Calisto, V., Gil, M. V., Otero, M. & Esteves, V. I. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. J. Colloid Interf. Sci. 448, 32–40 (2015).

  • 17.

    Li, W. H., Yue, Q. Y., Gao, B. Y., Wang, X. J. & Qi, Y. F. Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment. Desalination. 278, 179–185 (2011).

  • 18.

    Xiao, B., Dai, Q., Yu, X., Yu, P. & Zhai, S. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge. J. Hazard. Mater. 343, 347–355 (2017).

  • 19.

    Chen, Y. D., Ho, S. H., Wang, D., Wei, Z. S. & Chang, J. S. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis. Bioresour. Technol. 247, 463–470 (2017).

  • 20.

    Bandosz, T. J. & Block, K. Municipal sludge-industrial sludge composite desulfurization adsorbents: synergy enhancing the catalytic properties. Environ. Sci. Technol. 40, 3378–3383 (2006).

  • 21.

    Kong, L. J. et al. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environ. Pollut. 216, 568–574 (2016).

  • 22.

    Lebigue, C. J., Andriantsiferana, C., Krou, N., Ayral, C. & Mohamed, E. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation. J. Environ. Manag. 91, 2432–2439 (2010).

  • 23.

    Marques, R. R. N., Stüber, F., Smith, K. M., Fabregat, A. & Bengoa, C. Sewage sludge based catalysts for catalytic wet air oxidation of phenol: Preparation, characterisation and catalytic performance. Appl. Catal. B. Environ. 101, 306–316 (2011).

  • 24.

    Tu, Y. T., Tian, S. H., Kong, L. J. & Xiong, Y. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst. Chem. Eng. J. 185, 44–51 (2012).

  • 25.

    Adam, C., Peplinski, B., Michaelis, M., Kley, G. & Simon, F. G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 29, 1122–1128 (2009).

  • 26.

    Kong, L. J. et al. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus. Environ. Pollut. 233, 698–705 (2018).

  • 27.

    Arenas, E. & Chejne, F. The effect of the activating agent and temperature on the porosity development of physically activated coal chars. Carbon 42, 2451–2455 (2004).

  • 28.

    Ioannidou, O. & Zabaniotou, A. Agricultural residues as precursors for activated carbon production-A review. Renew. Sust. Energ. Rev. 11, 1966–2005 (2007).

  • 29.

    Li, Y., Li, Y., Li, L., Shi, X. & Wang, Z. Preparation and analysis of activated carbon from sewage sludge and corn stalk. Adv. Pow. Technol. 27, 684–691 (2016).

  • 30.

    Wu, C., Song, M., Jin, B., Wu, Y. & Huang, Y. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge. J. Environ. Sci. 25, 405–412 (2013).

  • 31.

    Malik., A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 33, 122–138 (2007).

  • 32.

    Santibañez-Aguilar, J. E., Ponce-Ortega, J. M., González-Campos, J. B., Serna-González, M. & El-Halwagi, M. M. Synthesis of Distributed Biorefining Networks for the Value-Added Processing of Water Hyacinth. ACS Sustain. Chem. Eng. 1, 284–305 (2013).

  • 33.

    Phothisantikul, P. P., Tuanpusa, R., Nakashima, M., Charinpanitkul, T. & Matsumura, Y. Effect of CH3COOH and K2CO3 on Hydrothermal Pretreatment of Water Hyacinth (Eichhorniacrassipes). Ind. Eng. Chem. Res. 52, 5009–5015 (2013).

  • 34.

    Wang, S. D. et al. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. Chemosphere 195, 666–672 (2018).

  • 35.

    Tran, H. N., You, S. J., Hosseinibandegharaei, A. & Chao, H. P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 120, 88–116 (2017).

  • 36.

    Mitrogiannis, D. et al. Removal of phosphate from aqueous solutions by adsorption on to Ca(OH)2 treated natural clinoptilolite. Chem. Eng. J. 320, 510–522 (2017).

  • 37.

    Kilpimaa, S., Runtti, H., Kangas, T., Lassi, U. & Kuokkanen, T. Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. J. Ind. Eng. Chem. 21, 1354–1364 (2015).

  • 38.

    Lin, J. et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide. Chem. Eng. J. 309, 118–129 (2017).

  • 39.

    Ren, Z., Shao, L. & Zhang, G. Adsorption of Phosphate from Aqueous Solution Using an Iron–Zirconium Binary Oxide Sorbent. Water. Air. Soil. Pollut. 223, 4221–4231 (2012).

  • 40.

    Wang, D., Chen, N., Yu, Y., Hu, W. & Feng, C. Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent. J. Colloid. Interf. Sci. 464, 277–284 (2016).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here