Identification and Characterization of USP7 Targets in Cancer Cells

0
4


  • 1.

    Pfoh, R., Lacdao, I. K. & Saridakis, V. Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer 22, T35–54, https://doi.org/10.1530/ERC-14-0516 (2015).

  • 2.

    Frappier, L. & Verrijzer, C. P. Gene expression control by protein deubiquitinases. Curr Opin Genet Dev 21, 207–213, https://doi.org/10.1016/j.gde.2011.02.005 (2011).

  • 3.

    Nicholson, B. & Suresh Kumar, K. G. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60, 61–68, https://doi.org/10.1007/s12013-011-9185-5 (2011).

  • 4.

    Kim, R. Q. & Sixma, T. K. Regulation of USP7: A High Incidence of E3 Complexes. J Mol Biol 429, 3395–3408, https://doi.org/10.1016/j.jmb.2017.05.028 (2017).

  • 5.

    Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13, 879–886 (2004).

  • 6.

    Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486, https://doi.org/10.1038/nature02501 (2004).

  • 7.

    Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817, https://doi.org/10.1038/nature07290 (2008).

  • 8.

    van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8, 1064–1073, https://doi.org/10.1038/ncb1469 (2006).

  • 9.

    Sarkari, F. et al. EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathog 5, e1000624, https://doi.org/10.1371/journal.ppat.1000624 (2009).

  • 10.

    van der Knaap, J. A. et al. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol Cell 17, 695–707, https://doi.org/10.1016/j.molcel.2005.02.013 (2005).

  • 11.

    Ching, W. et al. A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog 9, e1003273, https://doi.org/10.1371/journal.ppat.1003273 (2013).

  • 12.

    Holowaty, M. N. et al. Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278, 29987–29994, https://doi.org/10.1074/jbc.M303977200 (2003).

  • 13.

    Jager, W. et al. The ubiquitin-specific protease USP7 modulates the replication of Kaposi’s sarcoma-associated herpesvirus latent episomal DNA. J Virol 86, 6745–6757, https://doi.org/10.1128/JVI.06840-11 (2012).

  • 14.

    Lee, H. R. et al. Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat Struct Mol Biol 18, 1336–1344, https://doi.org/10.1038/nsmb.2142 (2011).

  • 15.

    Salsman, J. et al. Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 86, 806–820, https://doi.org/10.1128/JVI.05442-11 (2012).

  • 16.

    Saridakis, V. et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18, 25–36, https://doi.org/10.1016/j.molcel.2005.02.029 (2005).

  • 17.

    Everett, R. D. et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. Embo J 16, 1519–1530, https://doi.org/10.1093/emboj/16.7.1519 (1997).

  • 18.

    Everett, R. D., Meredith, M. & Orr, A. The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication. J Virol 73, 417–426 (1999).

  • 19.

    Everett, R. D. et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72, 6581–6591 (1998).

  • 20.

    Gillen, J. et al. A survey of the interactome of Kaposi’s sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses. J Virol 89, 4918–4931, https://doi.org/10.1128/JVI.02925-14 (2015).

  • 21.

    Xiang, Q. et al. Human Herpesvirus 8 Interferon Regulatory Factors 1 and 3 Mediate Replication and Latency Activities via Interactions with USP7 Deubiquitinase. J Virol, https://doi.org/10.1128/JVI.02003-17 (2018).

  • 22.

    Chavoshi, S. et al. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem 291, 6281–6291, https://doi.org/10.1074/jbc.M115.710632 (2016).

  • 23.

    Sheng, Y. et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol 13, 285–291, https://doi.org/10.1038/nsmb1067 (2006).

  • 24.

    Hu, M. et al. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 4, e27, https://doi.org/10.1371/journal.pbio.0040027 (2006).

  • 25.

    Sarkari, F. et al. Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7. J Mol Biol 402, 825–837, https://doi.org/10.1016/j.jmb.2010.08.017 (2010).

  • 26.

    Jagannathan, M. et al. A role for USP7 in DNA replication. Mol Cell Biol 34, 132–145, https://doi.org/10.1128/MCB.00639-13 (2014).

  • 27.

    Georges, A. A. et al. USP7 Regulates Cytokinesis through FBXO38 and KIF20B. (submitted).

  • 28.

    Zemp, I. & Lingner, J. The shelterin component TPP1 is a binding partner and substrate for the deubiquitinating enzyme USP7. J Biol Chem 289, 28595–28606, https://doi.org/10.1074/jbc.M114.596056 (2014).

  • 29.

    Sarkari, F. et al. Ubiquitin-specific protease 7 is a regulator of ubiquitin-conjugating enzyme UbE2E1. J Biol Chem 288, 16975–16985, https://doi.org/10.1074/jbc.M113.469262 (2013).

  • 30.

    Pfoh, R. et al. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7. PLoS Pathog 11, e1004950, https://doi.org/10.1371/journal.ppat.1004950 (2015).

  • 31.

    Holowaty, M. N., Sheng, Y., Nguyen, T., Arrowsmith, C. & Frappier, L. Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem 278, 47753–47761, https://doi.org/10.1074/jbc.M307200200 (2003).

  • 32.

    Faesen, A. C. et al. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell 44, 147–159, https://doi.org/10.1016/j.molcel.2011.06.034 (2011).

  • 33.

    Ma, H. et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA 109, 4828–4833, https://doi.org/10.1073/pnas.1116349109 (2012).

  • 34.

    Pozhidaeva, A. K. et al. Structural Characterization of Interaction between Human Ubiquitin-specific Protease 7 and Immediate-Early Protein ICP0 of Herpes Simplex Virus-1. J Biol Chem 290, 22907–22918, https://doi.org/10.1074/jbc.M115.664805 (2015).

  • 35.

    An, L. et al. Dual-utility NLS drives RNF169-dependent DNA damage responses. Proc Natl Acad Sci USA 114, E2872–E2881, https://doi.org/10.1073/pnas.1616602114 (2017).

  • 36.

    Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

  • 37.

    Maertens, G. N., El Messaoudi-Aubert, S., Elderkin, S., Hiom, K. & Peters, G. Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. Embo J 29, 2553–2565, https://doi.org/10.1038/emboj.2010.129 (2010).

  • 38.

    Zhang, S. et al. Ubiquitin-specific protease 11 serves as a marker of poor prognosis and promotes metastasis in hepatocellular carcinoma. Lab Invest, https://doi.org/10.1038/s41374-018-0050-7 (2018).

  • 39.

    Wu, H. C. et al. Erratum: USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun 8, 16167, https://doi.org/10.1038/ncomms16167 (2017).

  • 40.

    Zhang, E. et al. Ubiquitin-specific protease 11 (USP11) functions as a tumor suppressor through deubiquitinating and stabilizing VGLL4 protein. Am J Cancer Res 6, 2901–2909 (2016).

  • 41.

    Zhou, Z. et al. Regulation of XIAP Turnover Reveals a Role for USP11 in Promotion of Tumorigenesis. EBioMedicine 15, 48–61, https://doi.org/10.1016/j.ebiom.2016.12.014 (2017).

  • 42.

    Lim, K. H. et al. Ubiquitin-specific protease 11 functions as a tumor suppressor by modulating Mgl-1 protein to regulate cancer cell growth. Oncotarget 7, 14441–14457, https://doi.org/10.18632/oncotarget.7581 (2016).

  • 43.

    Khoronenkova, S. V. et al. ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 45, 801–813, https://doi.org/10.1016/j.molcel.2012.01.021 (2012).

  • 44.

    Yang, Z. et al. STAT3 repressed USP7 expression is crucial for colon cancer development. FEBS Lett 586, 3013–3017, https://doi.org/10.1016/j.febslet.2012.06.025 (2012).

  • 45.

    Zhang, L., Wang, H., Tian, L. & Li, H. Expression of USP7 and MARCH7 Is Correlated with Poor Prognosis in Epithelial Ovarian Cancer. Tohoku J Exp Med 239, 165–175, https://doi.org/10.1620/tjem.239.165 (2016).

  • 46.

    Qin, D. et al. CDDO-Me reveals USP7 as a novel target in ovarian cancer cells. Oncotarget 7, 77096–77109, https://doi.org/10.18632/oncotarget.12801 (2016).

  • 47.

    Zhao, G. Y. et al. USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol 36, 1721–1729, https://doi.org/10.1007/s13277-014-2773-4 (2015).

  • 48.

    Hernandez-Perez, S. et al. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 36, 4817, https://doi.org/10.1038/onc.2017.220 (2017).

  • 49.

    Reverdy, C. et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol 19, 467–477, https://doi.org/10.1016/j.chembiol.2012.02.007 (2012).

  • 50.

    Gavory, G. et al. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol 14, 118–125, https://doi.org/10.1038/nchembio.2528 (2018).

  • 51.

    Jing, B. et al. Characterization of naturally occurring pentacyclic triterpenes as novel inhibitors of deubiquitinating protease USP7 with anticancer activity in vitro. Acta Pharmacol Sin, https://doi.org/10.1038/aps.2017.119 (2017).

  • 52.

    Di Lello, P. et al. Discovery of Small-Molecule Inhibitors of Ubiquitin Specific Protease 7 (USP7) Using Integrated NMR and in Silico Techniques. J Med Chem 60, 10056–10070, https://doi.org/10.1021/acs.jmedchem.7b01293 (2017).

  • 53.

    Lamberto, I. et al. Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem Biol 24, 1490–1500 e1411, https://doi.org/10.1016/j.chembiol.2017.09.003 (2017).

  • 54.

    Kategaya, L. et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550, 534–538, https://doi.org/10.1038/nature24006 (2017).

  • 55.

    Turnbull, A. P. et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481–486, https://doi.org/10.1038/nature24451 (2017).

  • 56.

    Stockum, A., Snijders, A. P. & Maertens, G. N. USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation. PLoS One 13, e0190513, https://doi.org/10.1371/journal.pone.0190513 (2018).

  • 57.

    Cai, J. B. et al. Ubiquitin-specific protease 7 acceleratesp14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 61, 1603–1614, https://doi.org/10.1002/hep.27682 (2015).

  • 58.

    Liu, X. et al. Trip12 is an E3 ubiquitin ligase for USP7/HAUSP involved in the DNA damage response. FEBS Lett 590, 4213–4222, https://doi.org/10.1002/1873-3468.12471 (2016).

  • 59.

    Felle, M. et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res 39, 8355–8365, https://doi.org/10.1093/nar/gkr528 (2011).

  • 60.

    Qin, W., Leonhardt, H. & Spada, F. Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem 112, 439–444, https://doi.org/10.1002/jcb.22998 (2011).

  • 61.

    Cheng, J. et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun 6, 7023, https://doi.org/10.1038/ncomms8023 (2015).

  • 62.

    Shi, D., Dai, C., Qin, J. & Gu, W. Negative regulation of the p300-p53 interplay by DDX24. Oncogene 35, 528–536, https://doi.org/10.1038/onc.2015.77 (2016).

  • 63.

    Ma, J. et al. The requirement of the DEAD-box protein DDX24 for the packaging of human immunodeficiency virus type 1 RNA. Virology 375, 253–264, https://doi.org/10.1016/j.virol.2008.01.025 (2008).

  • 64.

    Ma, Z., Moore, R., Xu, X. & Barber, G. N. DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog 9, e1003721, https://doi.org/10.1371/journal.ppat.1003721 (2013).

  • 65.

    Harper, S. et al. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry 53, 2966–2978, https://doi.org/10.1021/bi500116x (2014).

  • 66.

    Chauhan, D. et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358, https://doi.org/10.1016/j.ccr.2012.08.007 S1535-6108(12)00353-4 (2012).

  • 67.

    Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol 18, 1401–1412, https://doi.org/10.1016/j.chembiol.2011.08.018 (2011).

  • 68.

    Tanner, N. K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8, 251–262 (2001).

  • 69.

    Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–241, https://doi.org/10.1038/nrm1335 (2004).

  • 70.

    Xu, J. et al. Identification of a novel human DDX40gene, a new member of the DEAH-box protein family. J Hum Genet 47, 681–683, https://doi.org/10.1007/s100380200104 (2002).

  • 71.

    Yamauchi, T., Nishiyama, M., Moroishi, T., Yumimoto, K. & Nakayama, K. I. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 34, 3321–3340, https://doi.org/10.1128/MCB.00320-14 (2014).

  • 72.

    Oliver, D. et al. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 7, 43023, https://doi.org/10.1038/srep43023 (2017).

  • 73.

    Ali, A., Raja, R., Farooqui, S. R., Ahmad, S. & Banerjea, A. C. USP7 deubiquitinase controls HIV-1 production by stabilizing Tat protein. Biochem J 474, 1653–1668, https://doi.org/10.1042/BCJ20160304 (2017).

  • 74.

    Sun, C. et al. Regulation ofp27(Kip1) phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. Am J Cancer Res 6, 2207–2220 (2016).

  • 75.

    Gudipaty, S. A. & D’Orso, I. Functional interplay between PPM1G and the transcription elongation machinery. RNA Dis 3 (2016).

  • 76.

    Gudipaty, S. A., McNamara, R. P., Morton, E. L. & D’Orso, I. PPM1G Binds 7SK RNA and Hexim1 To Block P-TEFb Assembly into the 7SK snRNP and Sustain Transcription Elongation. Mol Cell Biol 35, 3810–3828, https://doi.org/10.1128/MCB.00226-15 (2015).

  • 77.

    Liu, J., Stevens, P. D., Eshleman, N. E. & Gao, T. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1). J Biol Chem 288, 23225–23233, https://doi.org/10.1074/jbc.M113.492371 (2013).

  • 78.

    Xu, K., Wang, L., Feng, W., Feng, Y. & Shu, H. K. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene 35, 5807–5816, https://doi.org/10.1038/onc.2016.115 (2016).

  • 79.

    Deng, T. et al. Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci USA 115, 4678–4683, https://doi.org/10.1073/pnas.1714938115 (2018).

  • 80.

    He, J. et al. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 289, 27278–27289, https://doi.org/10.1074/jbc.M114.589812 (2014).

  • 81.

    Shah, P., Qiang, L., Yang, S., Soltani, K. & He, Y. Y. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 8, 96522–96535, https://doi.org/10.18632/oncotarget.22105 (2017).

  • 82.

    Wu, H. C. et al. USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun 5, 3214, https://doi.org/10.1038/ncomms4214 (2014).

  • 83.

    Sarkari, F., Wang, X., Nguyen, T. & Frappier, L. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS ONE 6, e16598, https://doi.org/10.1371/journal.pone.0016598 (2011).

  • 84.

    Sun, Y. et al. An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci USA 89, 6516–6520 (1992).

  • 85.

    Salsman, J., Wang, X. & Frappier, L. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35. Virology 414, 119–129, https://doi.org/10.1016/j.virol.2011.03.013 (2011).

  • 86.

    Zeghouf, M. et al. Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3, 463–468 (2004).

  • 87.

    Georges, A. A. & Frappier, L. Proteomics methods for discovering viral-host interactions. Methods 90, 21–27, https://doi.org/10.1016/j.ymeth.2015.05.001 (2015).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here