Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction

0
4


  • 1.

    Zhu, T. Micrometre-scale plasticity size effects in metals and ceramics: theory and experiment. Doctoral dissertation- Queen Mary College, University of London (2009).

  • 2.

    Arzt, E. Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46, 5611–5626 (1998).

  • 3.

    Hall, E. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect B64, 747 (1951).

  • 4.

    Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

  • 5.

    Chokshi, A. H., Rosen, A., Karch, J. & Gleiter, H. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall 23, 1679–1683 (1989).

  • 6.

    Misra, A. & Thilly, L. Structural metals at extremes. MRS Bull. 35, 965–972 (2010).

  • 7.

    Louchet, F., Weiss, J. & Richeton, T. Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett. 97, 75504 (2006).

  • 8.

    Brenner, S. S. Plastic deformation of copper and silver whiskers. J. Appl. Phys. 28, 1023–1026 (1957).

  • 9.

    Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 27, 1484–1491 (1956).

  • 10.

    Phani, K. K. Tensile strength of SiC whiskers. J. Mater. Sci. Lett. 6, 1176–1178 (1987).

  • 11.

    Hashishin, T., Kanawa, T., Kaneko, Y. & Iwanaga, H. Morphology and tensile strength of titanium nitride whiskers. J. Ceram. Soc. JPN. 105, 1042–1046 (1997).

  • 12.

    Pelleg, J. Mechanical properties of materials. Vol. 190, Springer Science and Business Media (2012).

  • 13.

    Jang, D. & Greer, J. R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64, 77–80 (2011).

  • 14.

    Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

  • 15.

    Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

  • 16.

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

  • 17.

    Ng, K. S. & Ngan, A. H. W. Breakdown of Schmid’s law in micropillars. Scr. Mater. 59, 796–799 (2008).

  • 18.

    Kiener, D., Grosinger, W., Dehm, G. & Pippan, R. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008).

  • 19.

    Ng, K. S. & Ngan, A. H. W. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712–1720 (2008).

  • 20.

    Ghosh, P. & Chokshi, A. H. Size effects on strength in the transition from single-to-polycrystalline behavior. Metall. Mater. Trans. A 46A, 5671–5684 (2015).

  • 21.

    Rubenstein, L. S. Effect of size on tensile strength of fine polycrystalline nickel wires, NASA technical note. Report no: TN D-4884, DTIC Document (1966).

  • 22.

    Miyazaki, S., Shibata, K. & Fujita, H. Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 27, 855–862 (1979).

  • 23.

    Fleck, N. A. & Hutchinson, J. W. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41, 1825–1857 (1993).

  • 24.

    Stölken, J. S. & Evans, A. G. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998).

  • 25.

    Kim, J.-Y. & Greer, J. R. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245–5253 (2009).

  • 26.

    Kim, J.-Y., Jang, D. & Greer, J. R. Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr. Mater. 61, 300–303 (2009).

  • 27.

    Kim, J.-Y., Jang, D. & Greer, J. R. Crystallographic orientation and size dependence of tension–compression asymmetry in molybdenum nano-pillars. Int. J. Plast. 28, 46–52 (2012).

  • 28.

    Rinaldi, A., Peralta, P., Friesen, C. & Sieradzki, K. Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 56, 511–517 (2008).

  • 29.

    Keller, C. & Hug, E. Hall–Petch behaviour of Ni polycrystals with a few grains per thickness. Mater. Lett. 62, 1718–1720 (2008).

  • 30.

    Keller, C., Hug, E. & Feaugas, X. Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27, 635–654 (2011).

  • 31.

    Chen, X. X. & Ngan, A. H. W. Specimen size and grain size effects on tensile strength of Ag microwires. Scr. Mater. 64, 717–720 (2011).

  • 32.

    Chauhan, S. S. & Bastawros, A. F. Probing thickness-dependent dislocation storage in freestanding Cu films using residual electrical resistivity. Appl. Phys. Lett. 93, 41901 (2008).

  • 33.

    Raulea, L., Govaert, L. & Baaijens, F. T. Grain and specimen size effects in processing metal sheets. Adv. Technol. Plast. 2, 19–24 (1999).

  • 34.

    Keller, C., Hug, E., Habraken, A. M. & Duchene, L. Effect of stress path on the miniaturization size effect for nickel polycrystals. Int. J. Plast. 64, 26–39 (2015).

  • 35.

    Wang, C.-J., Bin, G., Shan, D.-B. & Sun, L.-N. Sun, Effects of specimen size on flow stress of micro rod specimen. Trans. Nonferrous Met. Soc. China. 19, s511–s515 (2009).

  • 36.

    Janssen, P., De Keijser, T. H. & Geers, M. G. D. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng. A 419, 238–248 (2006).

  • 37.

    Molotnikov, A., Lapovok, R., Davies, C., Cao, W. & Estrin, Y. Size effect on the tensile strength of fine-grained copper. Scr. Mater. 59, 1182–1185 (2008).

  • 38.

    Lederer, M., Gröger, V., Khatibi, G. & Weiss, B. Size dependency of mechanical properties of high purity aluminium foils. Mater. Sci. Eng. A 527, 590–599 (2010).

  • 39.

    Yang, B., Motz, C., Grosinger, W. & Dehm, G. Cyclic loading behavior of micro-sized polycrystalline copper wires. Procedia Eng. 2, 925–930 (2010).

  • 40.

    Chen, Y., Kraft, O. & Walter, M. Size effects in thin coarse-grained gold microwires under tensile and torsional loading. Acta Mater. 87, 78–85 (2015).

  • 41.

    Khatibi, G., Stickler, R., Gröger, V. & Weiss, B. Tensile properties of thin Cu-wires with a bamboo microstructure. J. Alloys Compd. 378, 326–328 (2004).

  • 42.

    Liu, D. et al. Size effects in the torsion of microscale copper wires: Experiment and analysis. Scr. Mater. 66, 406–409 (2012).

  • 43.

    Tabata, T., Fujita, H., Yamamoto, S. & Cyoji, T. The effect of specimen diameter on tensile behaviors of aluminum thin wires. J. Phys. Soc. Jpn. 40, 792–797 (1976).

  • 44.

    Wang, Y., Ma, E. & Chen, M. Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80, 2395–2397 (2002).

  • 45.

    Wang, Y., Chen, M., Zhou, F. & Ma, E. High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002).

  • 46.

    Frick, C., Clark, B., Orso, S., Schneider, A. & Arzt, E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008).

  • 47.

    Sun, Z. et al. Dynamic recovery in nanocrystalline Ni. Acta Mater. 91, 91–100 (2015).

  • 48.

    Warthi, N., Ghosh, P. & Chokshi, A. H. Approaching theoretical strengths by synergistic internal and external size refinement. Scr. Mater. 68, 225–228 (2013).

  • 49.

    Agepati, S., Ghosh, P. & Chokshi, A. H. Microstructural evolution and strength variability in microwires. Mater. Sci. Eng. A 652, 239–249 (2016).

  • 50.

    Wang, C.-J. et al. Tensile deformation behaviors of pure nickel fine wire with a few grains across diameter. Trans. Nonferrous Met. Soc. China 26, 1765–1774 (2016).

  • 51.

    Thompson, A. W. Yielding in nickel as a function of grain or cell size. Acta Mater. 23, 1337–1342 (1975).

  • 52.

    Rathmayr, G. B. & Pippan, R. Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Mater. 59, 7228–7240 (2011).

  • 53.

    Kunzi, H. U. Strength and fracture of metallic filaments. Fiber Fracture, 183 (2002).

  • 54.

    Bergamaschi, A. et al. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J. Synchrotron Radiat 17, 653–668 (2010).

  • 55.

    Rajendran, C. et al. Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector. J. Synchrotron Radiat 18, 318–328 (2011).

  • 56.

    Boudet, N. et al. XPAD: a hybrid pixel detector for X-ray diffraction and diffusion. Nucl. Instrum. Methods Phys. Res 510, 41–44 (2003).

  • 57.

    Van Swygenhoven, H. et al. Following peak profiles during elastic and plastic deformation: A synchrotron-based technique. Rev. Sci. Instrum 77, 013902 (2006).

  • 58.

    Poulet, P. A. et al. Observations by in-situ X-ray synchrotron computed tomography of the microstructural evolution of semi-crystalline Polyamide 11 during deformation. Polymer Testing 56, 245–260 (2016).

  • 59.

    Kieffer, J. & Dimitrios, K. PyFAI, a versatile library for azimuthal regrouping. J. Phys: conference series 425, 20 (2013).

  • 60.

    Van Swygenhoven, H. & Van Petegem, S. In-situ mechanical testing during X-ray diffraction. Mater. Characterization 78, 47–59 (2013).

  • 61.

    Ghosh, P., Van Petegem, S., Van Swygenhoven, H. & Chokshi, A. H. An in-situ synchrotron study on microplastic flow of electrodeposited nanocrystalline nickel. Mater. Sci. Engg. A 701, 101–110 (2017).

  • 62.

    Thilly, L. et al. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu–Nb nanocomposite wires. Acta Mater. 57, 3157–3169 (2009).

  • 63.

    Wilkens, M. The determination of density and distribution of dislocations in deformed single crystals from broadened X‐ray diffraction profiles. Physica status solidi (a) 2.2, 359–370 (1970).

  • 64.

    Groma, I., Ungár, T. & Wilkens, M. Asymmetric X‐ray line broadening of plastically deformed crystals. I. Theory. J. Appl. Crystallogr 21.1, 47–54 (1988).

  • 65.

    Ungár, T. et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr 34.3, 298–310 (2001).

  • 66.

    Schwaiger, R. et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003).

  • 67.

    Van Petegem, S., Zimmermann, J. & Van Swygenhoven, H. Microstructure and deformation mechanisms in nanocrystalline Ni–Fe. Part II. In situ testing during X-ray diffraction. Acta Mater. 61, 5846–5856 (2013).

  • 68.

    Renner, E., Gaillard, Y., Richard, F., Amiot, F. & Delobelle, P. Sensitivity of the residual topography to single crystal plasticity parameters in Berkovich nanoindentation on FCC nickel. Int. J. Plast. 77, 118–140 (2016).

  • 69.

    Rathmayr, G. B. & Pippan, R. Extrinsic and intrinsic fracture behavior of high pressure torsion deformed nickel. Scr. Mater. 66, 507–510 (2012).

  • 70.

    Fang, T., Li, W., Tao, N. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).

  • 71.

    Lu, K. Making strong nanomaterials ductile with gradients. Science 345, 1455–1456 (2014).



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here